122 research outputs found

    Nonlinear robust control of tail-sitter aircrafts in flight mode transitions

    Get PDF
    © 2018 Elsevier Masson SAS In this paper, a nonlinear robust controller is proposed to deal with the flight mode transition control problem of tail-sitter aircrafts. During the mode transitions, the control problem is challenging due to the high nonlinearities and strong couplings. The tail-sitter aircraft model can be considered as a nominal part with uncertainties including nonlinear terms, parametric uncertainties, and external disturbances. The proposed controller consists of a nominal H∞controller and a nonlinear disturbance observer. The nominal H∞controller based on the nominal model is designed to achieve the desired trajectory tracking performance. The uncertainties are regarded as equivalent disturbances to restrain their influences by the nonlinear disturbance observer. Theoretical analysis and simulation results are given to show advantages of the proposed control method, compared with the standard H∞control approach

    A Monte Carlo Model of Pitting Corrosion of Underground Power Transmission Cable

    Full text link
    The life of underground power transmission cables is greatly reduced by pitting corrosion of the reinforcing tin-bronze tapes and this corrosion fatigue leads to cable failure. Since these cables are distributed in different places and can fail at different times, it is difficult to maintain and replace these cables until they fail. Hence, accurate prediction of pit growth in these tapes and plastic deformation analysis of these tapes with pits are crucial steps in cable maintenance. This thesis documents the findings from the probability distribution of corrosion pits on reinforcing tin-bronze tapes using deterministic Monte Carlo simulations. The findings were compared with the measured pit depth distribution of tapes that have been in service for over 40 years obtained from open literatures. Additionally, the finite element model (FEM) was used to analyse the relationships of applied stress and pit depth with a model of failure mechanisms. The input data for the FEM were based on the pit depth from the simulation and applied internal oil pressure from the experiment data. A Monte Carlo simulation was performed with every stable pit that had nucleated, propagated, and repassivated on the metal surface, and the model considered the interaction between individual pits in an explicit manner. The measured data were compared against previously published data from actual samples from different locations and with various service durations to investigate the complete distribution of pits. The studies showed that the simulated pit depth distribution is very similar to the experimental pit depth distribution on the tapes. This pit depth distribution model provides a powerful tool to determine the residual life of reinforcing tin-bronze tapes used in underground power transmission cables. The FEM was used to examine the failure condition of the reinforcing tapes under various applied stress and pit depths. The pit depth was gained from the Monte Carlo simulations, and the applied stress was based on UTS. Thus, the life of an underground power cable can be calculated. This FEM procedure provides an alternative method to determine the probability of failure of reinforcing tapes and a convenient way to identify the life of underground cables, dependent on the failure model

    Testing Hypotheses of Covariate-Adaptive Randomized Clinical Trials

    No full text
    <div><p>Covariate-adaptive designs are often implemented to balance important covariates in clinical trials. However, the theoretical properties of conventional testing hypotheses are usually unknown under covariate-adaptive randomized clinical trials. In the literature, most studies are based on simulations. In this article, we provide theoretical foundation of hypothesis testing under covariate-adaptive designs based on linear models. We derive the asymptotic distributions of the test statistics of testing both treatment effects and the significance of covariates under null and alternative hypotheses. Under a large class of covariate-adaptive designs, (i) the hypothesis testing to compare treatment effects is usually conservative in terms of small Type I error; (ii) the hypothesis testing to compare treatment effects is usually more powerful than complete randomization; and (iii) the hypothesis testing for significance of covariates is still valid. The class includes most of the covariate-adaptive designs in the literature; for example, Pocock and Simon’s marginal procedure, stratified permuted block design, etc. Numerical studies are also performed to assess their corresponding finite sample properties. Supplementary material for this article is available online.</p></div

    Isoprene Regioblock Copolymerization: Switching the Regioselectivity by the in Situ Ancillary Ligand Transmetalation of Active Yttrium Species

    No full text
    Regioblock copolymers of single alkenes hold great promise for modifying the properties of polymer materials but remain scarce due to the lack of viable synthetic methodologies. Here we describe a method for switching the regioselectivity of the cationic yttrium-catalyzed polymerization of conjugated dienes during chain growth, which leads to the formation of a series of di- and multiregioblock homo/mixed-copolymers with different properties from isoprene and myrcene. Mechanistic data demonstrate that the amidinate yttrium active species [L<sup>b</sup>YPIP<sup>3,4</sup>]<sup>+</sup> (L<sup>b</sup> = [PhC­(NC<sub>6</sub>H<sub>4</sub><sup><i>i</i></sup>Pr<sub>2</sub>-2,6)<sub>2</sub>]<sup>−</sup>) changes to the tetramethylaluminate yttrium active center {L<sup>s</sup>YPIP<sup>3,4</sup>}<sup>+</sup> (L<sup>s</sup> = [AlMe<sub>4</sub>]<sup>−</sup>) in situ by amidinate ligand transfer in the presence of AlMe<sub>3</sub>. The transformation of active species switches the regioselectivity from 3,4- to <i>cis</i>-1,4 polymerization while the polymer chain keeps propagating. Al<sup><i>i</i></sup>Bu<sub>3</sub> not only functions as a chain transfer agent but also plays a key role in preventing the chain termination during the amidinate transmetalation. These results highlight the versatility and potential utility of a strategy for the design and precision control of polymer structure and physical properties

    NLLSS: Predicting Synergistic Drug Combinations Based on Semi-supervised Learning

    No full text
    <div><p>Fungal infection has become one of the leading causes of hospital-acquired infections with high mortality rates. Furthermore, drug resistance is common for fungus-causing diseases. Synergistic drug combinations could provide an effective strategy to overcome drug resistance. Meanwhile, synergistic drug combinations can increase treatment efficacy and decrease drug dosage to avoid toxicity. Therefore, computational prediction of synergistic drug combinations for fungus-causing diseases becomes attractive. In this study, we proposed similar nature of drug combinations: principal drugs which obtain synergistic effect with similar adjuvant drugs are often similar and vice versa. Furthermore, we developed a novel algorithm termed Network-based Laplacian regularized Least Square Synergistic drug combination prediction (NLLSS) to predict potential synergistic drug combinations by integrating different kinds of information such as known synergistic drug combinations, drug-target interactions, and drug chemical structures. We applied NLLSS to predict antifungal synergistic drug combinations and showed that it achieved excellent performance both in terms of cross validation and independent prediction. Finally, we performed biological experiments for fungal pathogen Candida albicans to confirm 7 out of 13 predicted antifungal synergistic drug combinations. NLLSS provides an efficient strategy to identify potential synergistic antifungal combinations.</p></div

    Table_4_Comparative genomic analyses reveal genetic characteristics and pathogenic factors of Bacillus pumilus HM-7.xlsx

    No full text
    Bacillus pumilus plays an important role in industrial application and biocontrol activities, as well as causing humans and plants disease, leading to economic losses and biosafety concerns. However, until now, the pathogenesis and underlying mechanisms of B. pumilus strains remain unclear. In our previous study, one representative isolate of B. pumilus named HM-7 has been recovered and proved to be the causal agent of fruit rot on muskmelon (Cucumis melo). Herein, we present a complete and annotated genome sequence of HM-7 that contains 4,111 coding genes in a single 3,951,520 bp chromosome with 41.04% GC content. A total of 3,481 genes were functionally annotated with the GO, COG, and KEGG databases. Pan-core genome analysis of HM-7 and 20 representative B. pumilus strains, as well as six closely related Bacillus species, discovered 740 core genes and 15,205 genes in the pan-genome of 21 B. pumilus strains, in which 485 specific-genes were identified in HM-7 genome. The average nucleotide identity (ANI), and whole-genome-based phylogenetic analysis revealed that HM-7 was most closely related to the C4, GR8, MTCC-B6033, TUAT1 and SH-B11 strains, but evolutionarily distinct from other strains in B. pumilus. Collinearity analysis of the six similar B. pumilus strains showed high levels of synteny but also several divergent regions for each strains. In the HM-7 genome, we identified 484 genes in the carbohydrate-active enzymes (CAZyme) class, 650 genes encoding virulence factors, and 1,115 genes associated with pathogen-host interactions. Moreover, three HM-7-specific regions were determined, which contained 424 protein-coding genes. Further investigation of these genes showed that 19 pathogenesis-related genes were mainly associated with flagella formation and secretion of toxic products, which might be involved in the virulence of strain HM-7. Our results provided detailed genomic and taxonomic information for the HM-7 strain, and discovered its potential pathogenic mechanism, which lay a foundation for developing effective prevention and control strategies against this pathogen in the future.</p

    Image_1_Comparative genomic analyses reveal genetic characteristics and pathogenic factors of Bacillus pumilus HM-7.tif

    No full text
    Bacillus pumilus plays an important role in industrial application and biocontrol activities, as well as causing humans and plants disease, leading to economic losses and biosafety concerns. However, until now, the pathogenesis and underlying mechanisms of B. pumilus strains remain unclear. In our previous study, one representative isolate of B. pumilus named HM-7 has been recovered and proved to be the causal agent of fruit rot on muskmelon (Cucumis melo). Herein, we present a complete and annotated genome sequence of HM-7 that contains 4,111 coding genes in a single 3,951,520 bp chromosome with 41.04% GC content. A total of 3,481 genes were functionally annotated with the GO, COG, and KEGG databases. Pan-core genome analysis of HM-7 and 20 representative B. pumilus strains, as well as six closely related Bacillus species, discovered 740 core genes and 15,205 genes in the pan-genome of 21 B. pumilus strains, in which 485 specific-genes were identified in HM-7 genome. The average nucleotide identity (ANI), and whole-genome-based phylogenetic analysis revealed that HM-7 was most closely related to the C4, GR8, MTCC-B6033, TUAT1 and SH-B11 strains, but evolutionarily distinct from other strains in B. pumilus. Collinearity analysis of the six similar B. pumilus strains showed high levels of synteny but also several divergent regions for each strains. In the HM-7 genome, we identified 484 genes in the carbohydrate-active enzymes (CAZyme) class, 650 genes encoding virulence factors, and 1,115 genes associated with pathogen-host interactions. Moreover, three HM-7-specific regions were determined, which contained 424 protein-coding genes. Further investigation of these genes showed that 19 pathogenesis-related genes were mainly associated with flagella formation and secretion of toxic products, which might be involved in the virulence of strain HM-7. Our results provided detailed genomic and taxonomic information for the HM-7 strain, and discovered its potential pathogenic mechanism, which lay a foundation for developing effective prevention and control strategies against this pathogen in the future.</p

    Table_5_Comparative genomic analyses reveal genetic characteristics and pathogenic factors of Bacillus pumilus HM-7.xlsx

    No full text
    Bacillus pumilus plays an important role in industrial application and biocontrol activities, as well as causing humans and plants disease, leading to economic losses and biosafety concerns. However, until now, the pathogenesis and underlying mechanisms of B. pumilus strains remain unclear. In our previous study, one representative isolate of B. pumilus named HM-7 has been recovered and proved to be the causal agent of fruit rot on muskmelon (Cucumis melo). Herein, we present a complete and annotated genome sequence of HM-7 that contains 4,111 coding genes in a single 3,951,520 bp chromosome with 41.04% GC content. A total of 3,481 genes were functionally annotated with the GO, COG, and KEGG databases. Pan-core genome analysis of HM-7 and 20 representative B. pumilus strains, as well as six closely related Bacillus species, discovered 740 core genes and 15,205 genes in the pan-genome of 21 B. pumilus strains, in which 485 specific-genes were identified in HM-7 genome. The average nucleotide identity (ANI), and whole-genome-based phylogenetic analysis revealed that HM-7 was most closely related to the C4, GR8, MTCC-B6033, TUAT1 and SH-B11 strains, but evolutionarily distinct from other strains in B. pumilus. Collinearity analysis of the six similar B. pumilus strains showed high levels of synteny but also several divergent regions for each strains. In the HM-7 genome, we identified 484 genes in the carbohydrate-active enzymes (CAZyme) class, 650 genes encoding virulence factors, and 1,115 genes associated with pathogen-host interactions. Moreover, three HM-7-specific regions were determined, which contained 424 protein-coding genes. Further investigation of these genes showed that 19 pathogenesis-related genes were mainly associated with flagella formation and secretion of toxic products, which might be involved in the virulence of strain HM-7. Our results provided detailed genomic and taxonomic information for the HM-7 strain, and discovered its potential pathogenic mechanism, which lay a foundation for developing effective prevention and control strategies against this pathogen in the future.</p

    Statistics of three drug combination datasets were listed, including the number of drugs, principal drugs, adjuvant drugs, known synergistic combinations (A), and drug pairs without known synergistic relationship (B) and the ratio A/B.

    No full text
    <p>Statistics of three drug combination datasets were listed, including the number of drugs, principal drugs, adjuvant drugs, known synergistic combinations (A), and drug pairs without known synergistic relationship (B) and the ratio A/B.</p

    Table_6_Comparative genomic analyses reveal genetic characteristics and pathogenic factors of Bacillus pumilus HM-7.xlsx

    No full text
    Bacillus pumilus plays an important role in industrial application and biocontrol activities, as well as causing humans and plants disease, leading to economic losses and biosafety concerns. However, until now, the pathogenesis and underlying mechanisms of B. pumilus strains remain unclear. In our previous study, one representative isolate of B. pumilus named HM-7 has been recovered and proved to be the causal agent of fruit rot on muskmelon (Cucumis melo). Herein, we present a complete and annotated genome sequence of HM-7 that contains 4,111 coding genes in a single 3,951,520 bp chromosome with 41.04% GC content. A total of 3,481 genes were functionally annotated with the GO, COG, and KEGG databases. Pan-core genome analysis of HM-7 and 20 representative B. pumilus strains, as well as six closely related Bacillus species, discovered 740 core genes and 15,205 genes in the pan-genome of 21 B. pumilus strains, in which 485 specific-genes were identified in HM-7 genome. The average nucleotide identity (ANI), and whole-genome-based phylogenetic analysis revealed that HM-7 was most closely related to the C4, GR8, MTCC-B6033, TUAT1 and SH-B11 strains, but evolutionarily distinct from other strains in B. pumilus. Collinearity analysis of the six similar B. pumilus strains showed high levels of synteny but also several divergent regions for each strains. In the HM-7 genome, we identified 484 genes in the carbohydrate-active enzymes (CAZyme) class, 650 genes encoding virulence factors, and 1,115 genes associated with pathogen-host interactions. Moreover, three HM-7-specific regions were determined, which contained 424 protein-coding genes. Further investigation of these genes showed that 19 pathogenesis-related genes were mainly associated with flagella formation and secretion of toxic products, which might be involved in the virulence of strain HM-7. Our results provided detailed genomic and taxonomic information for the HM-7 strain, and discovered its potential pathogenic mechanism, which lay a foundation for developing effective prevention and control strategies against this pathogen in the future.</p
    • …
    corecore